1/8 x3-1/27y3 please help …factor ths expression completely, then place the factors in the proper location on the grid

Question

1/8 x3-1/27y3 please help …factor ths expression completely, then place the factors in the proper location on the grid

in progress 0
Bella 2 weeks 2021-09-14T21:50:15+00:00 1 Answer 0

Answers ( )

    0
    2021-09-14T21:51:43+00:00

    Answer:

    factored form is: (\frac{x}{2}-\frac{y}{3})(\frac{x^2}{4}+\frac{xy}{6}+\frac{y^2}{9})

    Step-by-step explanation:

    The given expression is:

    \frac{1}{8}x^3 - \frac{1}{27}y^3

    The expression can be written as:

    (\frac{1}{2}x)^3-(\frac{1}{3}y)^3

    We know, a^3-b^3 = (a-b)(a^2+ab+b^2)

    a= x/2 and b = y/3

    Putting values in the formula given:

    (\frac{x}{2}-\frac{y}{3})((\frac{x}{2})^2+(\frac{x}{2})(\frac{y}{3})+(\frac{y}{3})^2)\\(\frac{x}{2}-\frac{y}{3})(\frac{x^2}{4}+\frac{xy}{6}+\frac{y^2}{9})

    So, factored form is: (\frac{x}{2}-\frac{y}{3})(\frac{x^2}{4}+\frac{xy}{6}+\frac{y^2}{9})

Leave an answer

Browse
Browse

27:3+15-4x7+3-1=? ( )