A 35-ft long solid steel rod is subjected to a load of 8,000 lb. This load causes the rod to stretch 0.266 in. The modulus of elasticity of

Question

A 35-ft long solid steel rod is subjected to a load of 8,000 lb. This load causes the rod to stretch 0.266 in. The modulus of elasticity of the steel is 30,000,000 psi. Determine the diameter of the rod (precision of 0.00).

in progress 0
Delilah 4 days 2021-10-10T21:43:27+00:00 1 Answer 0

Answers ( )

    0
    2021-10-10T21:44:38+00:00

    Diameter of rod = 19 mm

    Step-by-step explanation:

    We have the equation for elongation

                     \Delta L=\frac{PL}{AE}\\\\A=\frac{\pi d^2}{4}

    Here we have

                     Elongation, ΔL = 0.266 in = 0.00676 m

                     Length , L = 35 ft = 10.668 m

                     Load, P = 8000 lb = 35585.77 N

                     Modulus of elasticity, E = 30,000,000 psi = 2.07 x 10¹¹ N/m²

    Substituting

                     \Delta L=\frac{PL}{AE}\\\\A=\frac{\pi d^2}{4}\\\\\Delta L=\frac{4PL}{\pi d^2E}\\\\d^2=\frac{4PL}{\pi \Delta LE}\\\\d=\sqrt{\frac{4PL}{\pi \Delta LE}}\\\\d=\sqrt{\frac{4\times 35585.77\times 10.668}{\pi \times 0.00676 \times 2.07\times 10^{11}}}=0.019m\\\\d=19mm

    Diameter of rod = 19 mm

Leave an answer

Browse
Browse

27:3+15-4x7+3-1=? ( )